

Enabling Seamless Operation: Design Challenges

Avi Harel

Ergolight

6 Givon Str., Haifa 3433506, Israel

+972 54 453 4501

ergolight@gmail.com

Copyright © 2024 by Author Avi Harel. Permission granted to INCOSE to publish and use.

Abstract. Typically, accidents are commonly attributed to decision errors made by the human oper-

ators. The article presents models of normal operation and of operational errors, and a framework for

eliminating these errors by integration engineering. These models describe monitor-controller-server

interactions in normal and exceptional operation of socio-technical system. The design goal proposed

is to eliminate the operational risks. Based on several case studies, the conclusion is that the key to

preventing accidents is in managing the risks of operating in exceptional situations, in which the

server is not coordinated with the controller. A protocol of scenario-based interaction may be em-

ployed to ensure that the interaction is always coordinated.

Motivation

Operational waste

The primary goal of HSI design is to enable seamless operation. To achieve this goal, we need to

understand and overcome the sources of operational waste, namely, barriers to seamless operation.

In most of the systems, most of these barriers are unknown, because neither the designers nor the

customers can notice them, and therefore they are not aware of them. In case of an incident, when

they notice operational waste, they often attribute it to an operator’s error. They are obliged to pay

attention to a barrier only in case of accident, namely, when the costs are extremely high. According

to various statistics, accidents are commonly attributed to human errors (cf. Zonnenshain and Harel,

2015). To enable seamless operation, we need to understand the sources of incidents and find ways

to eliminate them. We should assume that the number of risky situations is huge, because we can see

only those that are costly, and because we do not bother to detect and investigate low-cost events.

Systems of interest

The scope of this discussion is any utility-critical system. The system utility may be defined as the

value of performance minus the costs of operational waste. Operational waste is inversely correlated

with the system usability, which is a key factor affecting functionality, safety, productivity, and con-

sumer satisfaction. We may classify the systems of interest according to the rate and costs of inci-

dents.

• Low-rate, high-cost incidents are commonly called accidents. Traditionally, designers attrib-

ute accidents to bad luck (Bloch, 1977; Taleb, 2007)

• High-rate, low-cost incidents are commonly called errors. Traditionally, the designers do not

admit the design mistakes, as the customers agree to attribute the failure to themselves (Nor-

man, 1983).

• High-rate, high-cost, as in medical treatment, intensive wars, or other disaster.

mailto:ergolight@gmail.com

Understanding errors

All systems are always operated under risk of unexpected failure, because these risks are unknown

(Taleb, 2007). When the failure costs are high, we typically attribute them to operator’s errors

(Hollnagel, 1983). Analysis of many accidents has shown that the term human error is just a name

for operational failure that the human operator was not able to prevent (cf. Dekker, 2007). To elimi-

nate human errors, we need to understand how they develop. To be on the safe side, we should protect

the system from all risky situations, because we cannot tell when one of them might be disastrous.

Practically, this implies that error proofing ought to be a key topic of systems engineering. The

challenge is to get enough evidence to understand how system operation fails.

Evidence base

To get the evidence of the sources of failure, we need to embed special probes and tools in the system

design, to sense, trace, and analyze the system activity (Harel et al., 2008), and to provide reports

about exceptional activity (Harel, 1999, 2009). These extra means are costly, because the system

activity is complex, and are affordable only in special domains, such as aeronautics and high-risk

process industries.

Another barrier to capturing exceptional activity is the accountability bias, namely, reluctance to

gather evidence about the source of failure (Dekker, 2007). The designers’ interest is to underestimate

the costs of errors, and to overestimate the costs of capturing exceptions. Typically, designers are

likely to compromise operational risks, preferring explanations such as force majeure and Murphy’s

Law, over comprehensive root-cause analysis (RCA).

Reactive RCA

In traditional RCA we look for a unique trigger for the unfortunate event. Often, we realize that

besides the trigger, there are other risk factors, typically, special conditions that enable the undesired

effect of the trigger. In reactive engineering, we often look for flaws in the development practices.

For example, the RCA of the classical Therac-25 accidents indicated nearly 12 engineering problems

(Leveson, 1983, 2017). These findings are based on safety thinking, which is ad hoc. These findings

are circumstantial. They might suggest to the development team how they could do better engineer-

ing, but they did not teach about how to prevent similar accidents in future systems, in other domains.

In proactive engineering, the goal is to prevent such mishaps by design.

Proactive RCA

A proactive version of Murphy’s Law is that errors are design mistakes, and therefore failure should

be prevented by design. Error proofing should be based on a special model of rootcause analysis

(RCA).

To extend the findings to other domains, we need to employ system thinking, rather than safety

thinking. A way to implement system thinking in the design of safety-critical system is by employing

the System Theoretic Accident Methods and Processes (STAMP) proposed by Leveson (2004), based

on the theory of cybernetics (Wiener, 1948).

Model-based RCA

A meta-RCA indicates that system failure is often the outcome of a two-stage process: first, an un-

expected trigger diverts the system situation to exceptional, and then, another activity results in the

undesired costly situation. Typically, the second activity could be regarded as expected, should the

system be in the original situation, prior to the first trigger. However, because the system situation is

exceptional, the second activity is unexpected.

The two-stage model applies not only to safety critical systems, as proposed originally, but also to

all utility-critical systems. It is often more effective than the traditional RCA for describing complex

operational failures, such as mode errors following unintentional activation of shortcut keys (Harel,

2009). Therefore, the STAMP approach may be extended to a System Theoretic Utility Methods and

Processes (STUMP) approach.

Operational risks

According to the failure model described above, the operational risks may be classified as triggers,

situational, and activity risks.

Triggers

The triggers may be classified according to their actuators: human or technological. Human operators

are error prone. A human factors version of Murphy’s Law is: if the design enables the operators to

fail, eventually they will. Technological triggers are much rarer because they are captured during the

system verification process. A specific technological trigger is intermittent power failure, followed

by automatic setting of a default mode, which does not comply with the system situation.

Human triggers may be unintentional or due to wrong decisions. Unintentional human triggers, such

as in the B-17 accidents in WWII, or the lever setting to the maintenance-only Control position in

the Torrey Canon accident, are called slips (Norman, 1983). In the context of HSI, the system should

provide the human operators with clear and comprehensive information required for decision mak-

ing. This information should include static prediction of the system situation, as well as exploratory

prediction of operational options. The information should be provided gradually, according to the

needs for decision making, employing HCD principles, considering the mental capabilities of the

human operators.

Human triggers are challenging, because humans are included in the system as flexible operators in

emergencies, to enable coping with exceptional situations unseen at design time. However, they can

rarely do it properly, due to their virtue of training-based reaction. According to the “irony of opera-

tion”, in emergency, the operators are likely to react as trained in normal operation, instead as by

calm, logical decision making. For example, if the system design includes a frequently used prompt-

ing to confirm risky operation, the human operator is likely to confirm the prompt automatically,

before considering its applicability, as expected by the designers.

Situational risks

The situational risks may be classified as external or internal. Externally, normal operation must be

in the performance envelope. Internally, the situations must be coordinated. External risks are due to

approaching the performance boundaries, defined as limits of performance variables. Internal risks

are due to diversion from the situations defined as normal. The number of possible situations grows

exponentially with the number of state machines employed in the system operation; therefore, care-

less design of the situation coordination is error prone. Special coordination techniques, such as sce-

nario-based situation assignment, must be employed to maintain situation coordination.

In normal design, almost all nontrivial system units are prone to situational errors, in terms of acces-

sibility or availability. For example, if a utility critical feature, such as a backup facility, is disabled

or inaccessible in functional operation, then the operation might fail due to an over-constrained (alpha

type) design mistake. On the other hand, if a risk critical feature, such as reset or restart, is enabled

or accessible in the wrong scenario, then the operation might fail due to under-constrained (beta type)

design mistake. Very common examples of

Activity risks

Activity risks are mode errors, namely, failures due problems of coordinating the mode (operational

state) of a system unit with the operational scenario. Often, they are due to enabling operation in

exceptional or in fuzzy situations. A situation is regarded as fuzzy if the system design does not

include means to identify the concrete situation. A special mode of fuzzy situation, implemented in

many accidents, is when the operational scenario is not defined explicitly. In these cases, the activity

intended for a particular scenario might be risky in other scenarios.

Almost all system units, and almost all system features, are prone to activity risks, due to mistakes

in constraining the system situation (cf Harel, 2011). Mode errors are very frequent in the operation

of consumer products, in which the design enables access to setup features in while in functional

operation. Enabling maintenance-only features in functional operation might also result in mode er-

rors, such as the erroneous disabling of the TMI backup pump. Another source of mode errors is

process design having multiple use cases of mode setting.

This might result in conflicting mode setting, as demonstrated in the TMI backup pump case.

Mode errors are also the primary source of several friendly fire accidents, as well as accidents in

transportation systems, such as several Tale Off/ Go Around (TO/GA), the AF296, AeroPeru 603,

and Torrey Canyon Loss Of Control Accidents (LOCA). Mode errors are also involved in accidents

due to operating in transient situations, such as in the radiotherapy Therac-25 accident. A special

form of activity risk, known as an interlock problem, is when enabling mode transition by conflicting

controllers’ scenarios.

Engineering

Affordability

A primary requirement for enabling HSI design is affordability. The development should be based

on predefined generic meta rules, which are common across many industries and domains. These

generic rules may be customized for specific families of projects.

Learning from SW engineering

Traditionally, the actual costs and time to market of software projects were 300% of the plans. Why?

“When a bridge falls down, it is investigated and a report is written on the cause of the failure.

This is not so in the computer industry where failures are covered up, ignored, and/or ration-

alized. As a result, we keep making the same mistakes over and over again”.

(Standish, 1995).

Model-based HSI design

The generic rules are based on models of system behavior (Harel, 2021). A top-level model is of the

big picture, comprising the STS, the stakeholders, and the interactions between them. Then, we drill

down from outside in (Boy, 2013). Each STS may include elementary units: technical units, human

users and operators, and AI units. The technical and AI units include processes, which interact with

each other.

In utility-oriented engineering we assume that we cannot predict the failure of elementary units. We

focus on the interactions, and we assume an OEM models of the elementary units. According to these

models, we need to specify the functional and performance requirements, and the unit messages about

both success and failure.

Normal interaction is task driven, comprising a supervisor, one or more controllers, and one or more

servers. In normal operation the supervisor processes define tasks for the controller processes, as well

as operational scenarios. The controller processes issue commands or requests to the service pro-

cesses, and the services provide situation and activity reports. The service processes may employ

behavioral twins, intended to provide static and exploratory preview information, based on simula-

tion (Luqi, 1989).

The supervisor processes are use cases of the controller processes, and the latter are use cases of the

service processes. Process duplication may support single use-case per process, enabling to prevent

conflicting mode setting.

Model-based coordination

A method used to design the coordination between processes is based on the principle of multiple

layer defense, as demonstrated using the Swiss Cheese illustration: the preferred layer is by risk

elimination, rebounding from hazards, and finally resilience.

1. The primary protection layer comprises methods for preventing hazards, such as by constrain-

ing the operation and by notifying on approaching the protection boundaries.

2. Not all hazards are expected. A second protection layer is about threat detection. A method

for detecting unexpected situations is by risk indicator, based on segmentation of continuous

system variables, such as performance variables, or time measurement of process execution

or state transition.

3. Not all expected hazards can possibly be prevented. A third protection layer comprises meth-

ods for rebounding from exceptional situations, such as by alerting the operators about the

increase of the risk level.

4. Occasionally, the operators might fail to rebound from the exceptional situation. The fourth

protection layer comprises methods for preventing the situation escalation, of the hazard

transforming to threats. The methods are by applying troubleshooting and recovery proce-

dures, by collaboration between the operators and the system, while in safe-mode operation.

5. Sometimes, the system design does not include sufficient means for troubleshooting, and the

coordination practically fails. For these cases, the system should apply a last protection layer,

which is by employing resilience procedures.

Rule definition

Key generic meta rules are intended for scenario definition and scenario-based situation and activity

design. Scenarios are used as situation vectors, namely, pointers to the set of state machines, thus

reducing the situational complexity from exponential to linear. The rules should define the mapping

from scenarios to the situation vectors. For example, in the Therac-25 accident, there were two op-

erational scenarios: X-ray and E-beam. The situations underlying these scenarios were tray position:

in or out, and beam intensity: low or high. The corresponding vectors were

X-ray ➔ (in, high), and

E-beam ➔ (out, low)

The accident was due to the exceptional situation (out, high).

The rules should also define the scenario transition, and the system behavior in the synchronization

of the transient scenario, during the transition. Other generic rules should support reacting to risky

activity and to diversion. The reaction to risky activity may be by rebounding. The reaction to diver-

sion should be troubleshooting in special safe-mode operation, in which risky activity should be dis-

abled. Yet another group of generic rules is testing support. This should be required to cope with the

unexpected. A special test mode should enable faking triggers, uncoordinated situations, and activity

risks.

Transdisciplinary engineering

Error proofing is a transdisciplinary activity:

• Systems engineering: in charge of defining functions, architecture and performance

• Human Centered Design: in charge of User Interface design, considering human factors

• HSI: in charge of defining the rules for normal operation, and for reacting to exceptions

• Software: in charge of employing the rules in object classes and instances

HSI design should develop from art to engineering (Harel & Zonnenshain, 2019). A model of this

transition was proposed for SW engineering (Standish, 1995).

Conclusions

The article presents three layers of operational failure: exceptions, errors, and accidents. The design

goal proposed here is to facilitate the system operation. The principles and methods discussed here

focus on mitigating the risks of exceptions. To implement the ideas described here, we should:

1. Develop and validate the meta rules proposed here

2. Develop tools for rule customization, activity tracking, activity analysis, investigation report-

ing, embedding behavioral twins in the system design, including test support

3. Define software object classes for the processing of supervision, control, and services, in

normal and in safe-mode operation, with testability attributes

4. Develop software plugins for scenario editing, rule-based detecting, alerting, rebounding, and

troubleshooting.

References

Bainbridge, L 1983, Ironies of automation. Automatica. 19 (6): 775–779.

doi:10.1016/00051098(83)90046-8. ISSN 0005-1098

Bloch, A 1977, Murphy's Law, and Other Reasons Why Things Go WRONG

Boy, GA, 2013, Orchestrating Human-Centered Design. New York: Springer. ISBN 978-14471-

4338-3

Harel, A 1999, Automatic Operation Logging and Usability Validation, Proceedings of HCI Inter-

national '99, Munich, Germany, Vol. 1, pp. 1128-1133

Harel, A 2009, Statistical Analysis of the User Experience, Invited talk - 2nd Meeting of isENBIS,

Hertzelia, Israel

Harel, A 2011, Comments on IEC 60601-1-8. Letter submitted to IEC/TC 62 working group.

Harel, A 2021. Towards Model-based HSI Engineering: A Universal HSI Model for Utility Optimi-

zation, to be published in Proceeding of the second HSI conference, San Diego, US.

https://en.wikipedia.org/wiki/Arthur_Bloch

Harel, A, Kenett, R & Ruggeri, F 2008, - Modeling Web Usability Diagnostics on the basis of Us-

age Statistics. in: Statistical Methods in eCommerce Research, W. Jank and G. Shmueli edi-

tors, Wiley.

Harel, A & Weiss, M, 2011, Mitigating the Risks of Unexpected Events by Systems Engineering,

The Sixth Conference of INCOSE-IL, Hertzelia, Israel

Harel, A & Zonnenshain, A 2019, Engineering the HSI. Proceedings of the first HSI conference,

Biarritz, France

Hollnagel, E 1983, Human Error. Position Paper for NATO Conference on Human Error. Bellagio,

Italy.

Leveson, N Turner, C 1993, "An Investigation of the Therac-25 Accidents," In Ethics and Compu-

ting: Living Responsibly in a Computerized World, by KW Bowyer. Los Alamitos, CA:

IEEE Computer Society Press, 1996. First Published in Computer, Vol.

26. No. 7, July 1993, pp. 18-41.

Leveson, N 2004. A New Accident Model for Engineering Safer Systems. Safety Science

42(4):237-270

Leveson, NG 2017. "The Therac-25: 30 Years Later," in Computer, vol. 50, no. 11, pp. 8-11, No-

vember

Luqi 1989, Software Evolution through Rapid Prototyping. IEEE Computer. 22 (5): 13–25.

doi:10.1109/2.27953. hdl:10945/43610

Norman, DA 1983, Design Rules Based on Analyses of Human Error. Communications of the ACM

26(4):254-258

Norman, DA 2013, The design of everyday things. MIT Press. Standish

Group, 1995, The COMPASS report, Forbes.

Taleb, NN 2007, The Black Swan: The Impact of the Highly Improbable. Random House Trade Pa-

perbacks.

Wiener, N 1948, Cybernetics; or, Control and communication in the animal and the machine.

Technology Press, Cambridge.

Zonnenshain, A & Harel, A 2015, A practical guide to assuring the system resilience to operational

errors, INCOSE. Annual International Symposium, Seattle.

Biography

Avi Harel. Developer of modern methodologies for utility-oriented systems

engineering, integration engineering, and HSI engineering. The goal is to ena-

ble safe, effective, seamless operation. The focus is on preventing operational

errors.

Avi proposes tutorials for developers of safety-critical, mission-critical,

productivity-critical, and consumer products, with examples from these do-

mains.

